SPATIAL LOCALIZATION OF TRANSITIONAL LAYERS IN PROBLEMS
OF THE NONLINEAR THEORY OF THERMAL CONDUCTIVITY

K. B. Pavlov UDC 517.946

It is shown that, based on solutions for a type of temperature waves, solutions can be constructed
which describe spatially localized transitional temperature layers.

Heat-transfer processes in media with a constant thermal conductivity and with the volumetric evolu-
tion or absorption of heat can be described by solutions for a type of thermal waves, a characteristic fea-
ture of which is the presence of a surface of weak discontinuity, separating regions with a pressure gradi-
ent equal to zero and differing from zero. In the particular case of absorbing media, this was pointed out
in [1, 2]},

In the present work a study has been made of the possibility, in principle, of the existence of spatially
localized transitional temperature layers with grad T # 0, bounded by two surfaces of a weak discontinuity,
outside of which T=const. The discussion involves solutions for a type of thermal waves in a medium, in
which heat sources or sinks may act.

Let us determine the steady- state distribution of the temperature T(z) in the half-space z >0, filled
with the above-mentioned medium. If, at the plane z =0, the value of the temperature is maintained constant,
T\0) =T, = const, and T(x) =T, = const, the functions
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and describe the sought temperature distribution. IHere &, is the position of the fixed front of the thermal
wave, T{Zy) ="T,. dT/dz(L () =0: 2 is the coefficient of thermaldiffusivity; the constant coefficient v is positive
in the case of heat sourccs and negative in the case of heat sinks, whose power is determined by the value

of lyl. With ¥ >0, T, =T(z) =Ty with y < 0. =T =T,

If the temperature of the surface z=0 does not remain constant, the temperature distribution must
be determined by the solution of the following unsteady-state problem:
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Moscow. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 4, pp. 179-181,
July-August, 1973. Original article submitted February 20, 1973.

© 1975 Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming,
recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for $15.00.

589



where z= £ (t) is the position of the moving front of the thermal wave.

Specifically, if

. . ay vt R
7w(t)=70+l,—.¢(1+7t—exp17tl, v=const >0 (2)
I

the temperature distribution in a medium with z= 0 has the form

T(z, t)_:{Tn;{-aTz[i ——exp:—%(z—vt)]—%-(z — oty with0 <z CE () (3)
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In this. the front of the thermal wave z= &(t) is moving in the medium at the velocity v, while, behind
the front, with £(t) =z <, there is an unperturbed medium with a temperature T(z) =T,. We note that, with
v >0, at the moment of time t=t,, tw(t*) =0, then, with ¥ >0, expressions (2) and (3) are meaningful only with
0=t=t,.

An analysis of solutions for a type of thermal waves, (1) or {3), permits the conclusion that, when
zones with heat sinks and sources exist simultaneously in the medium, the change in the temperature can
be completely localized in a transitional layer of finite thickness, outside of which the temperature is con-
stant.

For example, in a medium filling the infinite space —= < z < «_ with the limiting conditions T{~x) =
= Tyy= const, T(+=) =Ty, = const, when T, >Ty,, the following steady-state temperature distribution is indica-
ted:
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Expressions {4) were obtained under the assumption that, inthe segment (£, 0}, there act the heat
sinks y,;=const <0, and, in the segment (0, £,), the heat sources v, = const >0; at the straight line —= < z < «,
the function T(z) is everywhere continuous, together with its first derivative dTAz, being a limiting solu-
tion of the problem
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while, at the surfaces =0 and z=Z¢,. &,, the derivatives d™TAz™, m= 2 may undergo a discontinuity.

1f, in addition, it is assumed that the medium is moving with a constant velocity w=const in a direc-
tion perpendicular to the plane z =0, then, in this case the steady-state temperature distribution must be
found by solution of the problem
&aT ar .
egE— wT-t—F(z,l): 0
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where Fiz, T) is determined in accordance with expressions {(5). The solution of the problem (5), (6} is
written in the form
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here the values of ¢; and £, must be found from the algebraic system
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which, with arbitrary values of w, v,. and v,. must be solved numerically. In analytical form solutions of
system (8) can be obtained with w=0; in this case expressions (7) are accordingly written in the form of
expressions (4). In addition, system (8) has an analytical expression for the solutions with Y=Y =Y
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Thus, the presence of heat sources and sinks in the medium, depending nonlinearly on the tempera-
ture, can ensure the existence of spatially localized transitional thermal layers. In the cases under con-
sideration, their thickness tends to zero if Ty, — Ty, —0 or if —y. y,—«=. If the difference Ty, — T, remains
a finite quantity. and —v,, v, —c, then. on the curve of the temperature distribution there is a discontinuity.
i.e.. a temperature "offset,”

We note that transitional temperature layers may also be observed in a consideration of media with
heat sources and sinks of a more general form than are discussed in the present paper, and with another
arrangement of the sources and sinks, for example, if they are far apart. The investigation of the struc-
ture of transitional temperature waves and their displacements in space is of interest in the study of high-
temperature hydrodynamic phenomena, accompanied by radiation and the absorption of light quanta [3].
However, in this case the corresponding analytical investigations are made considerably more difficult by
the complex character of the action of the heat sources and sinks. as well as by their complex interconnec-
tion,
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